Particle acceleration at coronal mass ejection–driven interplanetary shocks and the Earth’s bow shock

M. I. Desai¹ and D. Burgess²

Received 28 March 2008; revised 20 June 2008; accepted 4 August 2008; published 31 October 2008.

1. Introduction

Particle acceleration is a fundamental process that occurs routinely in diverse astrophysical and heliophysical environments, including the solar corona [e.g., Wang et al., 2006], coronal mass ejection (CME)–driven interplanetary (IP) shocks [e.g., Desai et al., 2004], corotating interaction regions and their bounding shocks [e.g., Mason et al., 2008], planetary bow shocks [e.g., Desai et al., 2000], the solar wind termination shock [e.g., Stone et al., 2005], and supernovae shocks [Jones and Ellison, 1991]. Although space-borne remote and in situ satellite observations obtained over the last five decades or so have revolutionized our understanding of the basic physics of particle acceleration in space plasmas, particularly at collisionless shocks, many important questions need to be answered before we can develop the theoretical framework and models that will allow quantitative predictions of key properties of the accelerated particles. The basic questions associated with energetic particle populations are (1) where are the particles accelerated, (2) what source material is available for acceleration, (3) what mechanisms are responsible for injecting and accelerating the particles, and (4) how are the particle properties modified during their propagation from the acceleration sites to the observation point?

2. Solar Energetic Particles

2.1. Overview

In this paper, we will address all four of these questions using recent observations associated with two distinct but widely studied energetic ion populations: (1) solar energetic particles (SEPs) associated with CME-driven interplanetary shocks and (2) energetic ions observed upstream of the Earth’s bow shock. The nature, formation, and spatial scales of the shocks in these two cases are different: CME-driven IP shocks are large-scale piston-driven shocks that are formed when faster CMEs propagate through the ambient slower solar wind, while the Earth’s bow shock is a significantly smaller standing shock formed when the outflowing supersonic solar wind encounters the Earth’s magnetosphere. Nonetheless both types of shocks are believed to have several commonalities, including shock structure, heating, dissipation and the manner in which they accelerate particles. This paper compares the common theoretical concepts and the physical processes responsible for accelerating particles at CME-driven IP shocks and the Earth’s bow shock. Such cross-fertilization of common concepts and observational features has already enabled us to understand not only the properties and dynamics of CME-driven shocks and the Earth’s bow shock but also those of the collisionless shocks present in a wide variety of inaccessible astrophysical sites [e.g., Lee, 1982, 1983; Schwartz, 2006].

[¹] Southwest Research Institute, San Antonio, Texas, USA.
[²] Astronomy Unit, Queen Mary, University of London, London, UK.
chambers and neutron monitors [Forbush, 1946; Meyer et al., 1956]. Such events, also known as ground level events or GLEs, were closely associated with the maximum of Hα flares on the Sun. Consequently, it was presumed that there was a causal relationship between the flare and the energetic particles observed at 1 AU. Later, however, on the basis of close association between SEP events and slow-drifting Type II and various Type IV radio bursts, Wild et al. [1963] proposed that the energetic particles might be accelerated at magnetohydrodynamic shock waves that typically accompanied the flares. In addition, Lin [1970] reported that the SEP events observed at 1 AU could essentially be grouped into two types: “pure” electron events closely associated with flares and metric Type III emission; and “mixed” events where protons, relativistic electrons, and flares were associated with Type II/IV radio events. On this basis Lin [1970] proposed two distinct acceleration processes for the pure and the mixed SEP events.

[5] Using Skylab observations, Kahler et al. [1978] noted a close association between CMEs and large solar proton events, suggesting that the CME could either create open field lines for flare particles to escape into the interplanetary medium or that the protons could be accelerated near a region above or around the outward moving ejecta far above the flare site. Subsequently, detailed analyses of flare durations, longitudinal distributions from multipurpose observations, high-resolution ion charge state and elemental composition measurements, and clearer associations with radio bursts led most researchers in the 1990s to accept the viewpoint that the SEP events observed at 1 AU belong to two classes: impulsive and gradual [e.g., Kahler et al., 1978; Cliver et al., 1982; Kocharov, 1983; Kahler et al., 1984; Luhn et al., 1984; Mason et al., 1984; Cane et al., 1986; Reames, 1988].

[6] In this two-class picture, as summarized in Table 1 [e.g., Reames, 1999; Cliver, 2000], gradual SEP events are longer-lasting (several days) and have larger fluences. These events are associated with Type II radio bursts and are characterized by coronal-like abundances and ion charge states for Fe (Q ~14). In contrast, the shorter duration (approximately a few hours) impulsive events have smaller fluences and are associated with impulsive x-ray flares and Type III radio bursts. These events are characterized by significant enhancements in ³He, electrons, and heavy ions over the corresponding solar wind values and with Fe charge states up to ~20 [Luhn et al., 1984]. Impulsive events are generally detected when the observer is magnetically connected to the flare site, while ions accelerated at the expanding large-scale CME-driven shocks populate magnetic field lines over a broad range of longitudes [Cane et al., 1988]. This paradigm clearly distinguishes between two separate acceleration sites and mechanisms, both driven by explosive events on the Sun: diffusive acceleration of

Table 1. Evolving Paradigm for SEP Events

<table>
<thead>
<tr>
<th>Property</th>
<th>Impulsive/Flare-Related</th>
<th>Gradual/CME-Shock-Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron/proton ratio</td>
<td>~10⁻² – 10⁻¹</td>
<td>~10⁻² – 10⁻¹</td>
</tr>
<tr>
<td>He³/He⁴</td>
<td>~1</td>
<td>~0.04 – 0.6</td>
</tr>
<tr>
<td>Fe/O</td>
<td>~1</td>
<td>~0.36 – 2.3</td>
</tr>
<tr>
<td>H/He</td>
<td>~10</td>
<td>~10</td>
</tr>
<tr>
<td>Qv</td>
<td>~20</td>
<td>~10 – 20</td>
</tr>
<tr>
<td>In situ particle event duration (h)</td>
<td><30⁰</td>
<td>180⁰</td>
</tr>
<tr>
<td>X-ray duration</td>
<td>impulsive (~10 min-1 h)</td>
<td>gradual (>1 h)</td>
</tr>
<tr>
<td>Optical/coronograph observations</td>
<td>jet-like ejections</td>
<td>narrow CMEs</td>
</tr>
<tr>
<td>Events/year</td>
<td>~1000</td>
<td>~10</td>
</tr>
</tbody>
</table>

Footnotes:

- ^a^ Averaged over several events.
- ^b^ Range measured in individual events.
- ^1^ Mason et al. [2004].
- ^2^ Klecker et al. [2006].
- ^3^ Leske et al. [2005].
- ^4^ Wang et al. [2006].
- ^5^ Kahler et al. [2001].
- ^6^ Energetic particle composition instruments in the 1970s–1980s did not have sufficient mass resolution to measure the He³/He⁴ ratio below the ~10% level, so it was simply assumed that the He³/He⁴ ratio in gradual SEPs would be similar to that measured in the presumed source material, i.e., the solar wind.
- ^7^ Desai et al. [2006a].
- ^8^ Mason et al. [1999], Möbius et al. [1999], Leske et al. [2001].
- ^9^ Cane et al. [2002].
- ^10^ Gopalswamy et al. [2004].
ambient coronal or solar wind material at CME-driven coronal and IP shocks; and stochastic acceleration of coronal material heated up to \(\sim 10 \) MK during magnetic reconnection in solar flares.

[7] Since these earlier studies, instruments with greater sensitivity and resolution on board the Wind spacecraft [Acuña et al., 1995] and the Advanced Composition Explorer (ACE) [Stone et al., 1998a] during solar cycle 23 have provided major observational advances in terms of comparing the solar wind ion composition and its variations [Gloeckler et al., 1992; von Steiger et al., 2000] with the energy dependence and event-to-event variability of the ionic charge state, elemental, and isotopic composition in SEP events over a broad energy range [e.g., Oettlker et al., 1997; Mazur et al., 1999; Möbius et al., 1999; Cohen et al., 2005; Desai et al., 2006a; Klecker et al., 2006]. These new observations have made it possible to reexamine questions about the origin of the seed populations for shocks near 1 AU [Desai et al., 2001, 2003; Kucharek et al., 2003] and near the Sun [Cohen et al., 1999; Mason et al., 1999; Desai et al., 2006a], reevaluate the relative roles of flares and CME-driven shocks [e.g., Cohen et al., 1999, 2003; Cane et al., 2003; Tylka et al., 2005], and probe details of the effects of scattering near the coronal acceleration region and transport to 1 AU during individual events [Cohen et al., 2005; Tylka et al., 2005; Mason et al., 2006].

[8] Table 1 summarizes our current understanding of SEP events. It is now clear that individual large SEP (LSEP) events often exhibit characteristics of both gradual and impulsive SEP events, and that the distinction between SEP events is blurred. The remainder of this section focuses on new observations from solar cycle 23 that have contributed significantly to our understanding of LSEP events.

2.2. LSEP Events of Solar Cycle 23

[9] In addition to the transient SEP events, observations at 1 AU show a continuous presence of intermediate-energy particles extending from suprathermal energies to \(> 10 \) MeV/nucleon [Mason et al., 1999, 2005; Gloeckler, 2003; Desai et al., 2006b]. Figure 1 shows oxygen fluences from the solar wind to cosmic ray energies obtained by several ACE instruments from October 1997 – June 2000 [Mewaldt et al., 2001]. The suprathermal energy region (red bar in Figure 1) is between \(\sim 2 \) and 100 keV/nucleon. Figure 1 also shows the energy spectra of various solar and interplanetary sources that can contribute to this energy region. In addition to these sources, the suprathermal pool also includes interstellar and inner source pickup ions and the heated solar wind [e.g., Mason et al., 2005]. Desai et al. [2006b] reported that the suprathermal heavy ion composition near 1 AU is highly dynamic and varies with solar activity (CIR-like during solar minimum and SEP-like during solar maximum). The contributions from various sources to the suprathermal pool probably also varies on shorter (approximately hours) time scales. Presently, however, neither the mechanisms responsible for the acceleration of these particles are known [e.g., Fisk and Gloeckler, 2006] nor are the temporal and spatial properties of the various sources characterized.

[10] Since there is strong evidence that such suprathermal particles serve as the dominant source material for LSEP events [Mason et al., 1999; Desai et al., 2006a], it has become necessary to understand the origin and variability of these particles and how they affect the injection and acceleration processes at CME-driven shocks. Indeed, recent modeling work has shown that the puzzling increase in the Fe/O ratio with increasing energy above 10 MeV/nucleon can be understood in terms of preferential injection and shock drift acceleration (SDA) [e.g., Forman and Webb, 1985] of remnant flare suprathermals at quasi-perpendicular shocks. In this model, the diffusive acceleration of solar wind suprathermals at quasi-parallel shocks results in a systematic decrease in Fe/O ratio with increasing energy [Tylka et al., 2005]. This contrasting behavior is shown in Figure 2 for the 24 August 2002 and 21 April 2002 events observed at ACE.

[11] While the Tylka et al. [2005] model clearly depends on shock geometry near the Sun and the presence of suprathermal flare seed populations to account for LSEP events, Cane et al. [2003, 2006] alternatively proposed that all LSEP events seen at 1 AU are a mixture of flare- and shock-accelerated populations and that (Figure 3) the relative contributions from these components depends on properties of the flare, the strength of the CME shock, and the observer’s magnetic connection to the flare site. In this scenario, well-connected western hemisphere events associated with longer duration flares and weaker CME shocks are dominated by the flare-accelerated population above \(\sim 10 \) MeV/nucleon, causing the intensities to rise promptly and the Fe/O to increase significantly over the corresponding
solar wind value (Figures 2 and 3a). On the other hand, poorly connected eastern hemisphere SEP events (Figure 3b) have broader time profiles and Fe/O ratios similar to or lower than the corresponding solar wind value. Finally, central meridian events (Figure 3c) have two components: a prompt rise early in the event due to flare particles, followed by a larger IP shock-accelerated component with Fe/O ~0.1 or less superposed on the flare population. On this basis, Cane et al. suggested that the CME shock was strong enough in the western hemisphere 21 April 2002 event to accelerate particles above ~10 MeV/nucleon and cause the Fe/O to decrease with increasing energy as shown in Figure 2.

However, it is difficult to determine characteristics of the seed particle populations and CME shocks and to distinguish between the various acceleration processes.

Figure 2. (a and c) O and Fe fluences versus kinetic energy. (b and d) Fe/O ratio versus kinetic energy for the 21 April 2002 and 24 August 2002 SEP events. Data are from ACE/ULEIS [Mason et al., 1998] and ACE/SIS [Stone et al., 1998b].

Figure 3. The ~30 MeV/nucleon Fe and O intensity profiles during three LSEP events of cycle 23 [Cane et al., 2003]. These events are described as (a) prompt, (b) shock-accelerated, and (c) two-component.
occurring at the Sun on the basis of near-Earth data. This is primarily because the effects of scattering during acceleration, escape and propagation through the interplanetary medium smear out the temporal and spatial behavior [Cohen et al., 2005; Mason et al., 2006], potentially mixing particles from different acceleration sites. Indeed, Cohen et al. [2005] and Mason et al. [2006] suggested that the scattering of particles during acceleration or escape from the shock and/or during their propagation through the corona and the interplanetary medium play key roles in the compositional, spectral, and temporal variability of LSEP events. In particular, Cohen et al. [2005] noted that the breaks in the energy spectra for different species during each of the five LSEP events of October–November 2003 occur at the same value of the diffusion coefficient, \(k \), and used this to scale the energy spectra of various species. They suggested that the position of the spectral breaks and the resulting energy-dependent behavior is due to the rigidity dependence of the scattering mean free path in the vicinity of the shock acceleration region. Zank et al. [2000] showed that such rigidity dependence is consistent with a source of enhanced wave turbulence near the shock. An example of using the energy scaling to organize (flatten) the energy dependence of the heavy ion spectra is shown in Figure 4 for the 26 October 2003 event.

\[13\] In addition, Mason et al. [2006] pointed out that the dramatic variations in the Fe/O ratio at all energies between \(\sim 0.1 \) and 60 MeV/nucleon vanish in the majority (>70%) of the “prompt” western hemisphere SEP events that they surveyed by comparing the Fe intensities to the O intensities at approximately twice the Fe kinetic energy per nucleon. An example of such a comparison for the day 273, 1998 western hemisphere SEP event is shown in Figure 5. Note that the O intensity compared at twice the Fe energy results in nearly indistinguishable time histories. Mason et al. [2006] attributed the temporal behavior of the Fe/O ratio observed at the same kinetic energy per nucleon to the rigidity (or diffusion coefficient)-dependent scattering of

![Figure 4](image-url) (a) Fe and O fluences, (b) Fe/O ratio versus kinetic energy in MeV/nucleon, and (c) heavy ion elemental abundances versus scaled kinetic energy for the 26 October 2003 SEP event [Cohen et al., 2005] (see text for details).

![Figure 5](image-url) (left) Hourly averaged Fe (blue) and O (red) intensities at \(\sim 273 \) keV/nucleon and \(\sim 12 \) MeV/nucleon for the day 273, 1998 SEP event. (right) Fe intensities at the same energy, but the O intensities are at approximately twice the kinetic energy per nucleon. The O intensities are renormalized to facilitate comparison [Mason et al., 2006].
particles as they propagate through the corona and the interplanetary medium.

[14] In summary, LSEP observations of solar cycle 23 have raised the following important questions: (1) What physics determines the velocity or rigidity-dependent ordering of the heavy ion spectra, abundances, and time profiles in LSEP events? (2) Does such ordering depend on the location of the observer relative to the flare longitude and on CME shock geometry near the Sun? (3) How do flares contribute to LSEP events, i.e., do they provide seed particles or contribute directly? (4) What roles do particle scattering by waves and turbulence play during the acceleration/escape from the shock in the corona and during transport through the inner heliosphere? Table 1 and Figure 6 summarize these questions and show that the compositional, spectral and temporal variability during LSEP events of solar cycle 23 are believed to occur as a result of contributions from four different processes: (1) the reacceleration of remnant or fresh suprathermal ions from flares and prior gradual SEP events [Mason et al., 1999; Desai et al., 2006a; Mewaldt et al., 2006], (2) the interplay between shock geometry and preferential injection of suprathermal solar wind or flare ions [Tylka et al., 2005], (3) direct contributions from the accompanying flare [Li and Zank, 2005; Cane et al., 2006], and (4) particle scattering in the corona and the interplanetary medium [Cohen et al., 2005; Mason et al., 2006]. Some of these ambiguities will undoubtedly be resolved in cycle 24 using observations from the twin-STereo spacecraft, but the ultimate answers lie in making detailed in situ measurements as close to the Sun as possible where the effects of scattering and transport should be less prominent.

3. Energetic Ions Near the Earth’s Bow Shock

3.1. Overview

[15] The Earth’s bow shock has several unique features important in considering particle acceleration. Observations from Earth orbit have low relative speed between the spacecraft and shock, with high time resolution, which allows a detailed view of shock structure. Multispacecraft missions have enabled questions of temporal-spatial aliasing to be resolved so that accurate shock speed and orientation can be found. However, there are limitations when attempting

Table 2. Properties of Upstream Ion Events Near the Earth’s Bow Shock

<table>
<thead>
<tr>
<th>Property</th>
<th>Acceleration at Bow Shock</th>
<th>Magnetospheric Leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>solar wind–like, high-charge-state</td>
<td>low-charge-state</td>
</tr>
<tr>
<td></td>
<td>C, Ne-S and Fe</td>
<td>ionospheric ions like O⁺, N⁺</td>
</tr>
<tr>
<td>Energy spectra</td>
<td>exponential in E/q up to ~150–200 keV/e</td>
<td>high-charge-state solar wind ions power laws extending up to ~2 MeV</td>
</tr>
<tr>
<td>Electron association</td>
<td>up to ~10s of keV/e at quasi-perpendicular portions of the bow shock</td>
<td>up to ~ 1 MeV</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>isotropic, diffuse, gyrating, beam-like, reflected</td>
<td>strong (up to 1000:1) sunward anisotropies</td>
</tr>
</tbody>
</table>
to carry out tests of particle acceleration theories. The shock surface has a relatively small radius of curvature (compared to IP shocks), which is important for the comparative study of quasi-perpendicular and quasi-parallel shock structure; however, when the motion of energetic particles is considered, the small size of the system means that different regions may interact, particularly in the foreshock. Observations do not sample the full extent of the foreshock upstream, and with the low speed of spacecraft relative to the bow shock, temporal changes depend primarily on reconfiguration of the shock/foreshock as solar wind conditions change. This creates difficulties in interpreting temporal or spatial changes in the data, e.g., the time scales associated with acceleration processes. Finally, the bow shock is relatively close to the obstacle off which it stands. Geomagnetic activity triggered by magnetopause reconnection increases the possibility of particles energized within the magnetosphere escaping and contributing to upstream distributions. An overview of the known properties of these distinct types of upstream ion events is provided in Table 2.

3.2. Global Morphology

From the International Sun-Earth Explorer (ISEE) mission a view of the global morphology of the bow shock and foreshock was developed (Figure 7), which is still the framework for explaining observations (for a recent review, see Eastwood et al. [2005]). Table 3 summarizes the properties of the distinct types of ion populations observed upstream of the Earth’s bow shock. The foreshock is structured by the convection of interplanetary magnetic field (IMF) lines, the velocity of energetic particles as they leave the shock, and the propagation of particles (whether scatter free or diffusive). The orientation of the foreshock is controlled by the solar wind magnetic field, with the upstream edge defined by the tangent field line. Particles with progressively lower energies traveling upstream from a point on the bow shock follow paths at greater angles to the magnetic field (if scattering is neglected). Moreover, the configuration of the bow shock changes from quasi-perpendicular to quasi-parallel as the field lines connect deeper into the foreshock, affecting the energies of particles leaving the shock.

Behind the upstream foreshock edge, the foreshock contains electron beams with energies 1 - 10 keV that are seen close to, and just behind, the tangent field line where $\theta_{\text{bn}} = 90$. With deeper connection, lower-energy electrons are seen, including a heat flux from the downstream heated distribution [e.g., Fitzenreiter, 1995]. Low-energy field-aligned ion beams (FABs) are seen on field lines with deeper connection to the quasi-perpendicular bow shock. With still deeper connection where the magnetic field connects to the quasi-parallel bow shock, ions are seen with energies extending to 200 keV and distributions that are nearly isotropic. This latter class is the so-called diffuse ions. Although characterized as near isotropic at the shock, observations far upstream show a strong anisotropy for this energy range. Each foreshock region is associated with different wave types, but for energetic ions, the most important are the large-amplitude, ultralow-frequency (ULF) waves (period 5–20 s) seen in the quasi-parallel foreshock.

3.3. Field-Aligned Beams

The region of Field-Aligned Beams (FABs) is distinct within the global morphology of the ion foreshock and is usually seen as a transition between unconnected solar wind and the more energetic diffuse ion region. The beams have low energy, seldom extending beyond 10 keV, with intrinsic (i.e., in the beam frame) perpendicular temperature anisotropy and densities typically 1% of the solar wind value. FABs are produced at the bow shock where θ_{bn} is between 40° and 60°, but Oka et al. [2005] reported observations of a beam where the density decreased by more than an order of magnitude as θ_{bn} increased to $\sim 75^\circ$.

There are other types of ion beams related to the FAB class. Intermediate ion beams have a slightly larger pitch angle spread and higher energies, while gyrating ion beams consist of an important gyrotropic component and are generally nongyrotropic [Fuselier et al., 1986]. (The gyrating ion beam class should not be confused with the so-called...
<table>
<thead>
<tr>
<th>Property</th>
<th>Foreshock Ions</th>
<th>Diffuse</th>
<th>Magnetospheric Leakage</th>
<th>Far Upstream Ions</th>
<th>Bow Shock Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>Beam-Like</td>
<td>Diffuse</td>
<td>Magnetospheric Leakage</td>
<td>Far Upstream Ions</td>
<td>Bow Shock Accelerated</td>
</tr>
<tr>
<td>Duration</td>
<td>approximately a few minutes to 2 h</td>
<td></td>
</tr>
<tr>
<td>Temporal variations</td>
<td>abrupt onsets, associated with magnetic field direction changes and connection to quasi-perpendicular bow shock</td>
<td>e-folding distance of density gradient increases linearly with energy</td>
<td>abrupt onsets and decays</td>
<td>abrupt onsets and decays</td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td>solar wind-like</td>
<td>elemental He $^2+$ deficient compared to solar wind</td>
<td>solar wind-like</td>
<td>all energies rise simultaneously and abruptly</td>
<td></td>
</tr>
<tr>
<td>Energy/velocity</td>
<td>density decreases with peak energy</td>
<td>inverse velocity dispersion</td>
<td>all energies rise simultaneously and abruptly</td>
<td>C-Fe similar to CIRs during solar minimum (C/O0.75, Fe/O0.1) and similar to SEPs during solar maximum (C/O0.4, Fe/O0.2~0.5)</td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>elemental He $^2+$ deficient compared to solar wind</td>
<td>solar wind-like</td>
<td>ionospheric species, e.g., N$^+$, O$^+$</td>
<td>few isolated cases highly ionized O and C; solar wind-like for Fe</td>
<td></td>
</tr>
<tr>
<td>Charge states</td>
<td>solar wind-like</td>
<td>solar wind-like</td>
<td>occasional presence of low-charge-state O and N; also include multiply charged solar wind ions</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Energy dependence</td>
<td>none</td>
<td>?</td>
<td>none</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Energy spectra</td>
<td>1−10 keV</td>
<td>Few keV up to ~150−200 keV/e</td>
<td>10s of keV up to ~1−2 MeV in total energy</td>
<td>10s of keV up to ~1−2 MeV in total energy</td>
<td></td>
</tr>
<tr>
<td>Shape</td>
<td>highly peaked spectra, some evidence of high-energy tail</td>
<td>exponentials in energy/charge</td>
<td>soft power laws with spectral indices ~4</td>
<td>soft power laws with spectral indices ~4</td>
<td></td>
</tr>
<tr>
<td>Anisotropy</td>
<td>beam-like in solar wind frame, perpendicular anisotropy in beam frame</td>
<td>diffuse, near isotropic close to bow shock</td>
<td>strong (up to ~1000:1) sunward streaming</td>
<td>strong (up to ~1000:1) sunward streaming</td>
<td></td>
</tr>
<tr>
<td>Electron Association</td>
<td>electron heat flux from bow shock</td>
<td>none</td>
<td>up to ~100 keV</td>
<td>~25% of events have electrons up to ~100 keV</td>
<td></td>
</tr>
</tbody>
</table>
reflected gyrating ions seen at the quasi-perpendicular shock.)

20 Ion beams are a strong source of waves via linear instabilities. Winske and Leroy [1984], for example, present the linear theory and results of hybrid simulations of ion beam instabilities. These simulations indicate an evolution from beam-like to isotropic, which was suggested as a mechanism for the production of diffuse ions. Unlike diffuse ions, the FABs have low alpha particle relative abundance [Ipavich et al., 1984, 1988], making them an unlikely source of diffuse ions. They may, however, have a role in seeding the quasi-parallel foreshock with ULF waves. The FAB region tends to have little ULF wave activity, but monochromatic ULF waves are associated with gyrating beams, with a distinct boundary between the two types of distributions [Meziane et al., 2004].

3.4. Diffuse Ion Distributions

21 Upstream diffuse ion distributions, with densities relative to the solar wind of 0.5–2% [Trattner et al., 1994] and energies extending to about 200 keV/q, are associated with magnetic connection to the quasi-parallel portion of the bow shock. Velocity space distributions show a near isotropic shell extending from the energy of the solar wind [Paschmann et al., 1981]. The energy spectra above 30 keV are well represented by exponentials in energy, and different species have similar spectra when plotted in terms of the ions’ E/q. The abundance ratios of different species are constant when evaluated at the same E/q, with the alpha-to-proton ratio being close to the corresponding solar wind value [Ipavich et al., 1984, 1988].

22 In a statistical study, Trattner et al. [1994] found that the fluxes of the diffuse ions fall off exponentially with distance from the bow shock, with an e-folding distance varying from 3 Re to 10 Re between 10 keV and 67 keV for both protons and alpha particles. Kis et al. [2004], using Cluster data for a single event, were able to extract the spatial profile of energetic particle intensity and show that it followed an exponential fall-off, with e-folding distances varying between 0.5 and 2.8 Re for the energy range 11 keV to 27 keV (Figure 8). The significant energy-dependent increase in the e-folding distance indicates that more energetic particles can escape more easily into the upstream region, leading to harder spectra and larger anisotropy further from the bow shock.

3.5. Magnetospheric Ions and Far Upstream Events

23 Ion intensity enhancements of approximately a few keV up to ~1–2 MeV in energy have been routinely observed far upstream (>20 Re) and outside of the ion foreshock regions since the 1960s [e.g., Asbridge et al., 1968; Sarris et al., 1976; Scholer et al., 1979]. Such events are characterized by short durations (~1–2 h), steeply falling spectra (j ∝ E−α), large (>100:1) field-aligned sunward anisotropies [Mitchell and Roelof, 1983; Müller-Mellin et al., 2007], and positive correlations with the solar wind speed and geomagnetic indices [e.g., Desai et al., 2000]. Despite the wealth of information available, however, it is still not clear whether these ions are accelerated at the bow shock [e.g., Lee, 1982; Trattner et al., 2003] or inside the Earth’s magnetosphere [Sheldon et al., 2003; Anagnostopoulos et al., 2005; Chen et al., 2005].

24 In order to distinguish leaking magnetospheric ions from accelerated solar wind ions, measurements of ionic charge state are necessary, with low-charge-state ions usually magnetospheric in origin. It has been suggested that the majority of energetic (>50 keV) ions are of magnetospheric origin and that Fermi acceleration is not required to explain their energization [e.g., Anagnostopoulos et al., 1986]. However, the less frequent presence of ionospheric species like N⁺ and O⁺ ions (simultaneous with diffuse ions) [e.g., Möbius et al., 1986; Christon et al., 2000; Posner et al., 2002] indicates that Fermi acceleration near the bow shock must occasionally be accompanied by leakage from inside the magnetosphere. Strong evidence for upstream diffusion [Kis et al., 2004] also makes it difficult to argue categorically that Fermi acceleration does not operate at the bow shock.

25 Simultaneous IMP measurements of ion events inside the magnetosphere and in the upstream region led Sarris et al. [1978, 1987] to propose that the events observed upstream of Earth probably originated from inside the magnetosphere. In contrast, Scholer et al. [1981], using ISEE-1 and –3 data, reported that the upstream ion distributions look substantially different close to the bow shock and far upstream. They pointed out that some of the diffuse
ions could leak into the upstream region and then travel mostly scatter-free owing to the lower wave activity, leading to more anisotropic distributions [Mitchell and Roelof, 1983]. On the basis of this, Scholer et al. suggested that the locally accelerated diffuse population could be the source of the highly anisotropic distributions seen far upstream.

[26] Observations far upstream of the bow shock from such spacecraft as Wind, ACE and STEREO provide a different perspective on shock-associated energetic particles. Of particular relevance are the results of Mason et al. [1996] and Desai et al. [2000], which showed that the high-energy portion (above ~500 keV in total energy) of the energy spectra in upstream events was dominated by heavier solar wind–like ions such as CNO, NeS and Fe (Figure 9). Desai et al. [2006c] showed that the heavy ion composition in far upstream events above ~100 keV depends on the phase of the solar cycle and is essentially dominated by solar wind, CIR or SEP-like material. These new composition results appear to favor the acceleration of suprathermal ions of solar or interplanetary origin at the bow shock as the dominant mechanism.

[27] Finally, in studying the simultaneous occurrence of far upstream events, many independent studies have concluded that upstream ions probably originate from a large source region perhaps covering the entire size of the bow shock [e.g., Scholer et al., 1981; Haggerty et al., 1999, 2000; Dwyer et al., 2000; Desai et al., 2008] and propagate in large spatial structures in the upstream region [e.g., Sanderson et al., 1981; Haggerty et al., 1999, 2000; Dwyer et al., 2000; Desai et al., 2008]. Simultaneous observations of upstream events from STEREO-A, ACE and Wind [Desai et al., 2008] have identified these spatial structures (~0.03 AU) to be large-amplitude, anti-sunward propagating Alfvén waves embedded within high-speed solar wind flows associated with corotating interaction regions.

[28] In summary, two prominent questions remain unanswered: (1) What is the relative contribution of magnetospheric leakage to far upstream ion events? Desai et al. [2000] report that 25% of events are accompanied by 35 keV electrons (a tracer of magnetospheric leakage). On the other hand, the majority of upstream events probably originate on the dawnside of the bow shock, which is difficult to reconcile with the assertion that leakage from the magnetosphere will occur preferentially on the duskside. (2) When do these events occur? Desai et al. [2000, 2006c] also found a correlation between their frequency with solar cycle (more frequent during solar minimum), possibly indicating a link to geomagnetic activity. Posner et al. [2002] found some correlation with geomagnetic activity for events far upstream, but Trattner et al.’s [1994] statistical survey found no correlation with southward Bz. Other open questions relate to whether leaked particles are passive in waves and field structures governed by shock-accelerated particles, and the relative importance of large amplitude Alfvén waves. The main challenge for any model of far upstream ion production is to quantitatively account for the variety of complex observations in these events [Desai et al., 2000, 2006c, 2008].

4. Particle Acceleration Mechanisms

4.1. Fast Fermi or SDA

[29] A particle from the solar wind distribution reflected from the shock back upstream will gain energy in the normal incidence frame via the motional electric field. Reflection by magnetic mirroring successfully estimates
ion beam speeds [Sonnerup, 1969] but not density. The assumption of adiabatic invariance is also difficult to justify for suprathermal particles. In SDA the energy gain is from drift along the shock surface in the direction of the motional electric field. Simulations have shown that this mechanism is viable for producing beams consistent with the observed energies and reflected fractions [Burgess, 1987]. Test particle simulation of an observed event showed that the multiple encounter trajectory behavior of a SDA mechanism was a satisfactory explanation [Oka et al., 2005]. This latter study also found a density variation with q_{Bn} consistent with the simulation results.

[30] Tanaka et al. [1983] proposed a model for FAB generation by leakage from the heated magnetosheath distribution. This is not supported by the observations and simulations, which show that isotropization occurs close to the shock surface and not some distance behind it. Observations taken within the shock layer [Möbius et al., 2001] show a field-aligned beam developing directly out of the reflected-gyrating distribution. Kucharek et al. [2004] report a simultaneous dual spacecraft observation across the shock when a FAB is seen upstream. The downstream distribution has an insufficient level of phase space density to explain the observed upstream beam.

4.2. First-Order Fermi or Diffusive Acceleration

[31] The isotropy of the distributions at, and downstream of, the shock suggests that Fermi acceleration (also called first-order Fermi or diffusive shock acceleration) is responsible in some measure for the particle energization. This process has been broadly studied in the context of cosmic ray acceleration and shocks in interplanetary space [Forman and Webb, 1985; Scholer, 1985; Jones and Ellison, 1991].

[32] The theory of Fermi acceleration is usually treated as a diffusion-convection problem for the energetic particle distribution function, coupling the energetic particles with wave-particle scattering to the compression across the shock [e.g., Forman and Webb, 1985]. If the plasma flow and shock compression are fixed, then planar, steady state theories predict power law spectra with a slope that depends only on the shock compression independent of the species. In quasi-linear models [Lee, 1982, 1983], the spectrum of scattering waves is developed self-consistently with the spectrum of energetic particles, which are themselves assumed to be generating the waves resonantly [Ng et al., 2003].

[33] Any application of Fermi acceleration to explain the energetic particle distributions at the Earth’s bow shock and CME-driven IP shocks must account for the exponential spectra and their organization by E/q [Trattner et al., 1994] or ion rigidity [Cohen et al., 2005]. Some form of loss mechanism is required, and two possibilities have been suggested. Lee’s [1982] quasi-linear theory uses a finite-sized shock with particle loss at the sides of the acceleration region by perpendicular diffusion. With this assumption, and the use of diffusion coefficients derived from quasi-linear theory, the required E/q organization of the spectra can be recovered. The calculated wave energy power is also broadly consistent with the observations [Trattner et al., 1994].

[34] An alternative loss process is the so-called free escape boundary (FEB) somewhere upstream of the shock. This has been employed in Monte Carlo simulations of diffusive acceleration at the Earth’s bow shock and at CME-driven IP shocks [e.g., Ellison et al., 1990; Li et al., 2003, 2005]. The use of a FEB has some justification based on the observation far upstream of highly anisotropic distributions [e.g., Desai et al., 2000]. Comparison with data from AMPTE/IRM upstream and downstream of the bow shock.
shows good agreement between observations and the results of Monte Carlo modeling (Figure 10).

[35] In greater than one dimension another effect may have to be considered. For a finite shock, and an inclined field, each field line has only a finite time of connection to the shock which corresponds to a finite maximum in particle energy. It is possible that the FEB in one dimension has the same effect as the time of connection for a shock of finite extent [Scholer et al., 1999].

[36] A major question arises from the so-called injection problem: How do some particles that start in the thermal distribution participate in the diffusive shock acceleration process and gain enough energy to be considered energetic?

The injection of thermal solar wind ions has plagued our theoretical understanding of shock acceleration for several decades because of two reasons: (1) solar wind ions are highly anisotropic and the diffusive approximation becomes invalid, and (2) solar wind ions are convected away from the shock by the upstream solar wind flow, depriving them of sufficient speeds to return to the shock and participate in the acceleration process.

[37] Standard theories solve the diffusion-convection equation by simply assuming a given injection rate at a given energy at the shock, i.e., they inject a mono-energetic seed population. In contrast, Monte Carlo simulations do not have an ad hoc injection and assume that the scattering

| Table 4. Observational Properties of Large Gradual SEP Events and Upstream Events |
|---------------------------------|-----------------|-----------------|-----------------|
| Property | Large Solar Energetic Particle Events (SEPs) | Upstream Events |
| Duration | several hours to a few days | approximately a few minutes to 2 h |
| Temporal variations | Depends on magnetic connection between observer and solar source region. | e-folding distance of density gradient increases linearly with energy |
| Intensity | Well-connected western hemisphere events: prompt rise followed by slow decay; central meridian events: prompt rise followed by a local increase around shock passage; eastern events: gradual increase with a peak prior to shock arrival. | abrupt onsets and decays |
| Energy/velocity dependence | normal velocity dispersion for well-connected events | inverse velocity dispersion |
| Fe/O ratio | increases initially and then decreases near shock passage | all energies rise simultaneously and abruptly |
| Composition | C-Fe systematically enhanced relative to the corona according to M/Q ratio, but exhibit no systematic relationship as a function of M/Q ratio when compared with the solar wind | solar wind–like |
| Elemental | solar wind–like | C-Fe similar to CIRs during solar minimum (C/O ~0.75, Fe/O ~0.1) and similar to SEPs during solar maximum (C/O ~0.4, Fe/O ~0.2 – 0.5) |
| 3He/4He ratio | enhanced between ~4 and 150 times that measured in the ambient corona or the solar wind | no |
| Charge states | energy-dependent increase in Fe Q-state; above 10 MeV/nucleon, Q reaches ~20 in some events | solar wind–like |
| Energy dependence | Fe/O increases, decreases, or remains constant with increasing energy | solar wind–like for Fe; occasional presence of low-charge-state O and N |
| Energy spectra | few keV up to GeV | 10s of keV up to ~1–2 MeV in total energy |
| Range | few keV up to ~150–200 keV/e | soft power laws with spectral indices ~4 |
| Shape | power laws modulated by exponentials or double power laws; spectral breaks determined by the rigidity dependence of the diffusion coefficient | exponential in energy/charge |
| Anisotropy | field-aligned away from the Sun at the start of the event; reverses direction when IP shock passes over the spacecraft | diffuse, isotropic, gyrating, reflected, beam-like |
| Electron Association | ~10 s of keV up to approximately a few MeV | strong (up to ~1000:1) sunward streaming |
| | no | up to ~100 keV |

A00B06 DESAI AND BURGESS: CME-BOW SHOCK COMPARISONS A00B06

12 of 16
law is valid down to thermal energies, thereby making the injection process diffusive, just like the acceleration process. Hybrid plasma simulations (kinetic ions, fluid electrons) demonstrate that the diffuse ions start their energization with a reflection-like interaction with the shock [Kucharek and Scholer, 1991]. This implies that the first step to injection occurs within the shock layer itself, so that the suprathermal particles are an integral part of the quasi-parallel shock and strongly relate to other features of the shock such as large amplitude magnetic pulsations and intermittent specular reflection [Burgess et al., 2005].

Giacalone et al. [1993] showed how injection proceeds by particle interaction with the large amplitude magnetic pulsations within the quasi-parallel shock. Energy spectra in agreement with diffusive acceleration theory, at least over a restricted energy range, were found. Later, very large simulations of the parallel shock [Giacalone, 2004] studied the effect of a FEB at a fixed distance from the shock. Energetic particle fluxes decayed to a constant value upstream, suggesting an increase of the mean free path with distance upstream of the shock and a reduction in the maximum energy. This is similar to the transition to approximately scatter-free propagation for energetic particles seen far upstream of the bow shock.

Recent observations provide compelling evidence for the injection of suprathermal seed populations near the Earth’s bow shock [Desai et al., 2006c] and at CME-driven IP shocks [Desai et al., 2001; Kucharek et al., 2003], advancing the possibility that the “injection problem” for diffusive shock acceleration may not be as theoretically challenging as previously believed. Indeed, the suprathermal ions are likely to be injected into shock acceleration processes more efficiently when compared with the more abundant solar wind ions [Kucharek and Scholer, 1995].

To date, predictions of the diffusive shock acceleration theory have been confirmed for a handful of CME-driven IP shocks [e.g., Decker, 1981; Kennel et al., 1986; Sanderson et al., 1985; Lario et al., 2005b; Zank et al., 2006]. In contrast, the energetic particle observations near the majority of IP shocks appear to be at odds with theoretical predictions [e.g., Desai et al., 2004]. CME shocks also evolve dynamically and typically decrease in strength as they propagate through the solar corona and the interplanetary medium, which limits the ability of many of the shocks that produce SEPs near the Sun to accelerate particles by the time they reach 1 AU [Lario et al., 2005a].

To fully understand the observed SEP properties at 1 AU and beyond will require time-dependent, multidimensional global simulations of CME shocks and SEP acceleration that inject realistic seed populations and employ self-consistent wave-particle interactions, including shock heating and dissipation mechanisms.

5. Summary and Concluding Remarks

Table 4 compares and contrasts in detail the properties of large CME-related gradual SEP events with those of the upstream ions. Of particular interest are the temporal behavior, compositional and spectral properties, particle anisotropies, and association with energetic electrons. Recent measurements from missions such as ACE, Wind, SoHO, Cluster, Polar, Geotail and SAMPEX have filled in numerous gaps in our understanding of the generation of these particle populations. However, we are still unable to develop quantitative predictive models of radiation hazardous SEPs and upstream ion events. Table 5 summarizes our current understanding of the four main questions relating to these populations.

On the basis of detailed case studies and general statistical surveys of observations of upstream ion events, large gradual SEPs and IP shock-associated ESP events obtained over the last five decades, we conclude that diffusive shock acceleration is the most plausible mechanism for particle energization at CME-driven coronal and IP shocks as well as at the Earth’s bow shock. However, despite recent, major theoretical advances, many important questions regarding SEPs and upstream ions near Earth remain unanswered. This is because both the SEP and upstream ion measurements are smeared by a confluence of poorly understood physical effects whose contributions can vary with time and location. These effects include (1) the physical properties of the shocks [Burgess et al., 2005; Bale et al., 2005; Manchester et al., 2005; Tylka et al., 2005]; (2) the nature of wave-particle interactions and the type of turbulence present near the shocks [Ng et al., 2003; Bamert et al., 2004; Li et al., 2005]; (3) the kinetic processes by which the shocks heat the plasma and dissipate their energy [Wilson et al., 2007; Korreck et al., 2007]; (4) the distribution and composition of the seed populations available for acceleration [Desai et al., 2006b; Fisk and Gloeckler, 2006, 2007; Mevoldt et al., 2006]; (5) the type of injection and acceleration processes involved [Ellison et
Acknowledgments. Work at SWRI is partially supported by NSF grants ATM-0550960 and ATM-0551127 and NASA grants NNG05GF58G, NNG05GQ94G, NNX07AC12G, NNX07AG85G, NNX07AP69G, and NNX08AK78G. D.B. acknowledges useful discussions with M. Scholer.

Amitava Bhattacharjee thanks the reviewers for their assistance in evaluating this paper.

References

Krimigis, R. M. Skoug, and C. W. Smith (2003), Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks.

upstream of the Earth's bow shock with

